|
In 7-dimensional geometry, 132 is a uniform polytope, constructed from the E7 group. Its Coxeter symbol is 132, describing its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of one of the 1-node sequences. The rectified 132 is constructed by points at the mid-edges of the 132. These polytopes are part of a family of 127 (27-1) convex uniform polytopes in 7-dimensions, made of uniform polytope facets and vertex figures, defined by all permutations of rings in this Coxeter-Dynkin diagram: . ==1_32 polytope== |- |bgcolor=#e7dcc3|4-faces||23688: 4032 7560 111 12096 |- |bgcolor=#e7dcc3|Cells||50400: 20160 30240 |- |bgcolor=#e7dcc3|Faces||40320 |- |bgcolor=#e7dcc3|Edges||10080 |- |bgcolor=#e7dcc3|Vertices||576 |- |bgcolor=#e7dcc3|Vertex figure||t2 25px |- |bgcolor=#e7dcc3|Petrie polygon||Octadecagon |- |bgcolor=#e7dcc3|Coxeter group||E7, (), order 2903040 |- |bgcolor=#e7dcc3|Properties||convex |} This polytope can tessellate 7-dimensional space, with symbol 133, and Coxeter-Dynkin diagram, . It is the Voronoi cell of the dual E7 * lattice.〔(The Voronoi Cells of the E6 * and E7 * Lattices ), Edward Pervin〕 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「1 32 polytope」の詳細全文を読む スポンサード リンク
|